Appendix C Field Compaction Control Forms and Supplemental Instructions ## C-1. General ENG Form 4080 (Figure C-1) is for use where water content control is required to obtain adequate compaction; the title of this form is "Summary of Field Compaction Control of Impervious or Semipervious Soils for Civil Works Projects." ENG Form 4081 (Figure C-2) is for use when water content control (other than complete saturation) is not required; the title of this form is "Summary of Field Compaction Control of Pervious Soils and Rockfill for Civil Works Projects." Use of these forms is described in ER 1110-2-1925. - a. A database package utilizing the commercially available software routine dBase III Plus (Trademark of Ashton-Tate) was developed around the information required for ENG Forms 4080 and 4081; the system uses the microcomputer to analyze data for use in the quality assurance (QA) program. Specially prepared Computer Applications in Geotechnical Engineering (CAGE) software interacts with the database to reduce data, perform statistical analysis, and generate ENG Forms 4080 and 4081 with the information required for reporting. Data from field notes is entered into a microcomputer in a dBase III-driven format; for data manipulation, the system is menu driven and user interactive. CAGE is designed to store, retrieve, and display earthwork construction control data as well as provide summaries of required construction parameters. Hard copies of any of the summaries, reports, and graphs generated may be printed by the system along with computer-generated copies of ENG Forms 4080 and 4081 if they are required in hard copy form. The use and operation of the CAGE system is described by Edris, Strohm, and Woo (1991). - b. If construction control data are recorded manually on ENG Forms 4080 and 4081, information at the top of each form could be placed on a master sheet from which reproducible copies could be made for recording data and for making subsequent copies for submission. - c. Explanation of any abbreviations used which are not explained in the forms, should be furnished with the first report submitted on a project. - *d.* Lower lines of the forms may be used for necessary remarks. ## C-2. Additional Information Information on items below, as appropriate, should be submitted with the initial reports and also whenever changes are made. - a. Borrow sources and operations. - (1) Description of borrow materials (each borrow or excavation area). - (2) Natural water content. - (3) Method of adding water in pit. - (4) Method of reducing water content in pit. - (5) Method of excavating and mixing (describe equipment used). - (6) Equipment used for loading and transporting material. - b. Compaction equipment. Describe in detail. - (1) Sheepsfoot roller. - (a) Make, model, and whether self-propelled or towed. - (b) State size (diameter and length) and number of drums. - (c) Describe tamping feet: number of rows, feet per row, and total number of feet per drum; length, shape and base area of foot. - (d) Give weight of roller empty, weight as used, type of ballast, and unit pressure (weight of roller divided by total contact areas of tamping feet). - (e) Specify type of frame (rigid or oscillating), speed of travel during compaction, and if cleaners are used. - (2) Rubber-tired roller. - (a) Make and model. - (b) Number of boxes or sections, rolling width, overall width and length. - (c) Number of tires, tire size, ply rating and spacing. | ACS: ENGCW-E-TITRE | SHEET 1 OF 1 | CONTACT
NESSURE (PSI)
517 | 517 | | | COMMENTS | 42 100 | : | : | | | | on NM | | | !
! | | : | | : | : | | | | |---|---|--|---------|-------------------|----------------------------------|---|------------------|---------------|--------------------|--|-----------------------------|-------------------|----------|-------------------------------------|---|------------------|-----------|-------------------|--------------|-------------|---|----------------------------------|--|--| | ACS: | | • | | | FIELD AND LABORATORY CORRELATION | PERCENT
COM:
PACTION | N 100 68 100 | 102 | 103 | 96. | | 9.86 | 97.7 | ! | 97.3B | 94.1B | | 8 | 100 | | | | District, | | | | 60: 73 | , . | | | | | | -3.1 | -0.6 | 7 | | şs. | *; | | -3.0 | -0.6 | | +7.4 | ø | | | | ARMY ENGINEER DISTRICT, | ធ | | | REPORT NO. | NUMBER OF
PASSES | œ œ | 2 - X | | CON.
TENT | 160 | 112.7 12.9 | 17.1 | 12.9 | Clas | 85 | * | Std. | 10.2 | 10.2 | | 1 | | | | | 2 2 | pecto | | 1.5 | | | | 1.11 | r ears
Liquid Limi | MAX
ORV
OENBITY
(PCF) | COL 23 | 112.7 | 107. 2 | 116.0 | Visual | 113. | 113. | 1 Pt. | 124.8 | 126.3 | 1 | | ĺ | İ | | | * A P L | CINSPECTOR (INSPECTOR) | | IMPERVIOUS OR SEMIPERVIOUS SOILS FOR CIVIL WORKS PROJECTS | ansmi
1d) | LOOSE LIFT
THICKNESS (IN.) | | 2.2 | 400 | OPT
WATER
CON:
TENT
(%) | CO. 23 | , , , | , | | , , | ,! | | . ! | . | | 37.0 | 0 | | • | 1 | | | | | | oate of Report: (date transmitted from field) | 1 1 1 005 | cc cc | 11-11 | STANDARD METHOD | MAX
DRV
OENSITY
(PCF) | 18 700 | . ; | | • | | , | | | | | (A) 84.0 | 81.0 | | - | | | STUATED
FOID LIMIT
SPECTIVE | | | |) (d | | | - | STAND | 1 | 24 103
COL 78 | | | • ; | | | _, | | • | | | | (A) | - | | epare | MANUAL
FORT IS US
F PROCEDI
OL 21 AND | TROUGHT | | | use) | ğ . | | 6.70 | | WATER
COM.
TENT | 100 | 9.8 | 16.9 | 14. | | • | ' | t | | 11.9 | t; | 44.4 | 34.9 | | | was prepared. | OTHER EFF | CATE BY J | | FRVIOUS | COMTRACTOR:
district or division use) | (S) specifies or (D) Desired compaction scome exclusis equipment is 95 D +2 to 3 S STD | SFR | | - | ORV
OEMSITY
(PCF) | 00 10
COL 10 | 114.8 | 110.0 | 111.9 | District | | | District | 121.5 11.5 | 118.9 | District | 68.4 | 81.0 | | below) w | 0.0 A3 0 | PID COMPA
PID COMPA
DL 23, IMDI
ARSPECTO
E BY LETT | | | OF FIELD COMPACTION CONTROL OF IMPERVIOUS OR SEMIP | or div | gired | | 10-10 | MPLACE DATA | | 11 702 | | - - | | ŧ. | e : | | | 7.2 | 9.6 | + | 34.6 | 27.4 | + | - | GOL 20 (see be | 14.01au
6.8.14au
0.30.440 | 17 HOD, RA
17 HOD, RA
1, 21 OR C
1, 20 OR D,
18 OR HOD | | | strict or | () v (| 3 5 5 | \$7.40 | TOTAL SAMPLE | DEMSITY OF PERSON | Ç01 10 | ++ | | , , | | 113.0 | 110.7 | | 136.7 | 126.2 | | 82.3 | 1.1 | + | • | | MOLO, (B)
SIZE GREA
NS UNDER! | ANDARD MANDARD | | | for di | 50 OF (| 2 to . | 3 | | PLT DE | COr 18 C | n.
Z | 32 | 5.2 | Dam, | = | =
: | am, | | | E | 2 | 35 | - | | - G | AMTICLES
MOTE AS M | STY AND O
JOSHT ST.
DWPARISON
COL 22 DR
G FOR CO
COL 23, 19 | | | sired | SPECIFI | | 47-30 51-33 54-86 | ATTERBERG | 3 | נטרי | £ | 62 | 37 | Q, | | * | | | 0 | | 75 | 74 | | | after note on | HOD (A) | - On the part of control to the one right part of the afficient to the the standard control to sta | | | NACTNO.
(Fill in if desired for | (S) | 95 D | 8 | A TION | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 100 | 7 | | 44 | * * * | + | 4) | 4) | 0 ! | 72 | 72 | 37 | | | | DAND MET | USE BACK
ING IN BLATION,
17 OR COLLATE DERIL
COL 18 ** | | | | Fill in | | | 47.49 | CASSIFICATION
GRADATION | PASS. | 100 | * | # 1
: | * !
+ | | i | 4F | frem | | | from | 89 | 9,2 | | | 9061 | 2-1906 | 2 | | F FIELD | CONTRACT NO | 2 | E | 3 | - | X W M M M M M M M M M M M M M M M M M M | 11 202 0 | • | 0 | * . | ata from | * : | *
(i) | 1 | | · . | data fr | ΨH | ¥ | • | | 110.2 | 24 100 | 20 100
20 100
20 100 | | SUMMARY (| ţ | EMBANKMENT
ZONE | Central | - | 1 | CLASS
WORD
OR
LETTER
SYMBOL | | SP | - | CL. | Follow
Spillway
Excay | CL(E) | | Follow | SM | SM | Following | Σ | ≥ | | | Ξ
Μ | | THE INTERPRETATION OF THE PROPERTY PROP | | * | (nearest) | 1120 | O C | \$ | | | | # ! | | | | Spillway
Excav | | | Random Excav | Borrow | | | 4 | | | mold was added to EM 1110.2-1906 | PALE NATIONAL TO SOLVE THE CATE OF CAT | | | Daily | | | | | | EMBANKMEN7
Zome | 100 | DS | Central | US | | Ą | ∢. | | | mpervious | | ore. | Core | | nould have been. | d was | ME UMATIC
SAY TAMPE
MUCHERALA | INC OF DA | | d | <u>'</u> | ' | | 1 | | 1 | 1 702 | | نَّ | * | | 0 | | | R | Ē | | ĔŮ | EV | | | [- | PERIODIC
FRISTRI P | CENTERLI
CENTERLI
MOTE BY L
MF F.LL MA
TH THIS FO | | 3 | # W - | | | 12-14 17-21 | _ | TON OF | 9 100 | 93 | 104 | 104
105
1375
1375
797
826
826
801 | | but | 12 - n. | MTHLY, OR
OOT MOLLY
ERIPHT: C | RECOMB COTTET BY DISTRICT (PRINCING NO BORNISTERN OF CO
BY LEY OF ALAIL
CONTRACTOR OF THE SECRET OF THE SECRET TEST
CONTRACTOR OF THE SECRET O | | | | | | | | | | | - | A RIVER
STATE | | | | TEST IDENTIFICATION | | 1+ | D6 0 | D D C | 175 US | | 110 03 | 5 | | DS : | U.S. | - | | - | : | - 60 | Compaction procedure using 12- | SHEEPS | DEMBITY OF CLASS CASE | | | Dam | 401 | : : ; | 14-12 | EST IDEN: | 2 | 100 | 50 480 | | 121 | | | 5 110 | | 8 85 | 06 | i | | 91 | | - J | edure | DAILY W | E UPSTREATOR TO | | | nent | PD OPERA | | - | - | 40.14T2 | 100 | 147+50 | | 149+ | | 10+05 | 10+05 | | 7+25 | 00+8 | _ : | 30+00 | 20+00 | : |

 | n pro | DOCUMENT OF THE STATE ST | SUNFACE
SUNFACE
LIMAY EXC
BEFORE
TION AND | | | bankn | UNCH CA | | 2 | | 1 7 9 5 | 100 | r SV | r CYI | r CYI | | | > | | NS. | S.V. | • | 1964
19 AK CYL | ह | | 100 | pactio | 24 10 15 10 | TOF AXIS
TOF AXIS
TAOM FILL
NEA C, SPIL
IOL COLON | | | Main Embankment
Closure Section | ED FOR P | | 14-19 | | 0 k
4 4
5 0 | 700 | 1965
4 Mar | 4 Mar | 4 Mar | | 1963
9 Jul | 9 Jul | | 1963
6 Sep | 9 Sep | ļ | 1964
19 Aug | 21 Sep | | , te | Com | | | | | Project
Ma | SPACE RESERVED FOR BUNCH CARD OPERATOR | 7 | ļ | | T 0 2 | 100 | 488 | 489 | 490 | | 545 | : | | CRF-7
DM D-30 | CRF-8
DM D-48 | : | 404 | 707 | | Information not given in field report but sho | ATTN | 100 | • 1000 | Figure C-1. Specimen sheet showing data actually reported from several projects | (1CB1) | 4 | * WEATHERED | | | | COMMENTS
ON
TESTS | 2
0 | | | | | | | | | | | | | | |--|--|--|------------------------------------|-------------------|---------------------|---|----------------------|---------------------------------------|--------------|-------------------|------------|--------------|----------|-------------|--------------|--|------------------|--|-----------------------------|---| | MCS: ENGOW-E-ITCRI) | OF. | 1 WEA | | 7-7 | | | - L' | 8 | | | 60 X | ই | <u> </u> | | | | | | 1 | | | NCS: EN | SHEET_1 | HARONESS
Dam) | | 70-71 | 1 | 1 - 1 | 10 | | | + | 94.40
M | ω, 8 .0
Μ | - | | | | | + | - | GINEENS | | | 96 | Δ | lack
lack | ģ | | | 8 | 0 00 | | - | ~ | - | | | | | - | | District. | WI JUNE 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 | | | REPORT NO | ROCK DESCRIPTION YPE COLOR OIL | Slabby Basalt Gray
Basalt Black | 2 4 | DAY DENSITY | | | 8 E | | | 102. | 1 | | | | | - | | | | | | | ROCK DE
TYPE
A OTI | by Bas | | - | | | . 3 PVD | | - | > | 3.6 | | | | | - | - | - | PREPARED BY The protoctor Scenificory | | JECTS | er
smitte
1) | ROC
TYPE
(Data on | Slabl | 99-19 | | PIECO | | 134.3 | | | 112. | 118. | | | | | - | + | ╬ | > i F 3 | | RKS PRO | DATE OF REPORT 'date transmitted from field) | ZONE | 8 8 | 35-37 56-60 | SPECIFIC | OHAVIT | = | n n | | | | | | | | | | | 4 | IMEDIAL
DENOTE | | CIVIL WO | 'dat
froi | EMBANKMENT ZONE | Class II | 11. | | 100 O | 200 | 8 8 | | | 3.4 | | | | | | | | | D ISITY LONI I NO MOTE ME METERITE O | | L FOR | | | | | | 40 . 200 | | % % % % % % % % % % % % % % % % % % % | ++ | _ | 1 | | | | | | | | - | DOTHER DOTHER USE NIE OF THE | | ROCKFIL | o i | WEIGHT ILBI
OR CONT
PRESS (PSI) | 50 T | | | 3/4" ** 40 *200 | | 4 8
2 8
8 8 | | District
addon | 23. 4 | .3 | | | | | | | - | WHELE CASTRICATION OF THE TIME TO WAIT TO WAIT TO WAIT TO WAIT THE TIME TIME THE TIM | | DILS AND | crom | 1 | 20 | | | | 200 | 67.1 | | - 6 | 4 4 | 25 | | | | | | | | E HOW ESTI
F HOW ESTI
LABORATO
PACTION I
FOUR VAL
IONS DENC
ACTORY A | | VIOUS SC | CONTRACTOR
for distri | NO. OF | 2 | 73-74 | | 100 200 | 200 100 001 100 | 0.6 | | | 1 4 | - | | | | | - | + | 4 | AND STATE AND STATE SPECIAL CENT COM DE OFF DE | | OF PEF | sired | THICKNESS (MAR) | ∞ | 26-70 11-79 76-76 | CRADATION | 40 100 2 | 0. 10 | 1.04 | | Dam, | 2 2 | + | | | : | | + | water. | \dashv | E AS TONE DETAILS DETA | | CONTROL | y if de | | | | | 107AL SAMPLE | 100 | 33.6 | | | r <u>~</u> | 2.9 | | | | | | pu ! | | ILECATION ED SO NOT TABLE IVI NAMATELY ON DERIVE ON DERIVE ON DERIVE ON OF IN FOOTH | | ACTION (| nal entry if d
division use) | COMPACTION
EQUIP 18 | PR | 42.44 (5.47) | | 3/4 4 | 100 t | 4 4 1
2 8 4 | - | Total | - 4 | + | - | | | | | oatilin
A | | HENDENSEN | | FIELD COMPACTION CONTROL OF PERVIOUS SOILS AND ROCKFILL FOR CIVIL WORKS PROJECTS | CONTRACT NO. (Optional entry if desired for district or division use) | 1 | | _ | 4 1 | 1-1/2 3/ | 200 13 000 13 000 14 | 929 77.4 | | E | 44 | | | | | | | rane or tarpaulin | 00 S | 9% 2 1 2 | | 9 | ğ O | SPECIFIED (%) OMP PEL DEN | | 12-55 16-16 59-4: | | 3. | | 100 929 | | data fr | 1 6 | 8 | | : ! | - | ! | | rane | apparatus (Job-ta.11) | 30 0 0 0 | | SUMMARY | st) | L . | | | + + | MAX
THE STREET | ٠, | 3 3 | <u> </u> | ck-fill o | | - 00 | - | 1 1 | - | | | mem. | | | | | (nearest) | EMBANKWENT | sno | 3 | | CLASS
LET:
TER
SOURCE SYNE | | -+- | 1 | | i i | Helga | + | 1 1 | : | | e been. | lastic | 5/4 cu ya violating | THOO NAMES OF THE STATE | | Y | | EWBAN
ZO | Pervious | | | | <u>m</u> | | | 1 | | H H | | - | | | have | Sing G | ca ya | ERINOOK ERINOON INTERPRETATION INTER | | Daily | | | <u> </u> | - | | T E E E E E E E E E E E E E E E E E E E | | Pervicus | , , | | Class II | Class I | - | + - | | | but should ha | n page 1 | - 1 | EL TAMBIN
CENTERL
CONTENT
TOP ROCKY
TOP ROCKY | | (4) | « w , | | | - •
- • | 1 } | 0 0 0 1 X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | <u> </u> | * * | - | <u> </u> | : * | | <u> </u> | ·
+ - + | | 1 | t but | perfor | 31 11811 | SAND VOLLEY STREAM OF | | • | STATE | - | 1 1 9 | | ¥0:1 | TION
TION | ₩ | 338 | | | | -+ | · | - | | | report | DT) | 7 te | PARCHAN
FARCHON
FARCHON
COME (BA)
ON COMP
OP COMP
(TC | | | Dam | ar o | | 1 | TEST IDENTIFICATION | 0 F SET | 000 | 10 US | 3 | | : 07 | 100 DS | | : | | 1 | n field | Test | borate | SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVINE
SERVIN | | | nent | D OPERAT | 1 | - | 1653 | STATION | ++ | $\overline{}$ | 3 | | | 21+20 | | 1 | - | | given | Density Test (DT) performed using plastic memb | . V = laboratory test using | Control assessment to the | | | bankn | AND CAR | 9.2 | 11-11 | | TYPE 51. | 100 | V V | | + | | DT 21 | - | + | | | | | Col 28 - | Control of the contro | | | Main Embankment | SPACE RESERVED FOR PUNCH CARD OPERATOR | | | | OATE
TADE | 1 | 8 8 | 3. | | 1962 | 5 5
5 5 | | | | + + | * Information no | s: Col 3 | 8
 | | | | 1. | THESERVE
1 - CA | 1.5.1 | 19 | | 7.07 | ++ | -+- | ' | | 5 | 9212 | | † | | | Infort | Remark | \neg | · · · · · · · · · · · · · · · · · · · | | | PROJECT | SPACE | | | | , F | CF-10 | | 2 | | 1 | 2 2 | | <u> </u> | | | e ! | ž | | | Figure C-2. Specimen sheet showing both pervious fill and rock-fill data actually reported from two districts ## EM 1110-2-1911 30 Sep 95 - (d) Weight empty and as used, type of ballast, tire pressure, and load per tire as used. - (e) Speed of travel during compaction. - (3) Vibratory roller. - (a) Make and model. - (b) State size (diameter and length) and number of drums. - (c) Give weight of roller empty, static weight per roller used, dynamic ground pressure exerted, type of ballast, and vibrating frequency. - (d) Speed of travel during compaction. - c. Embankment operations. - (1) Type of equipment used in spreading and mixing the material. - (2) Method of removing oversize rock fragments. - (3) Method of adding water on the fill. - (4) Method of reducing water content of the fill. - d. Compaction control methods. - (1) For impervious or semipervious fill: Describe the methods used to determine in-place density and water content. Also report method of correcting for oversize particles and for correlating field density and water content for material with oversize particles with laboratory density and water content. Submit a copy of any reference curves used for correlating the field data with the laboratory data. - (2) For pervious fill or rock fill: Describe in detail methods used in determining laboratory maximum and minimum densities (if different from those specified in EM 1110-2-1906) and in determining field densities of pervious soils and rock fill. Also include details of methods used for correlating field and laboratory densities in determining percent compaction or relative density and details of methods used in correcting for oversize particles.